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Abstract 

Rough Sets theory provides a new mathematical tool to deal with uncertainty, inexact and vagueness of an information 
system. The information system may contain a certain amount of redundancy that will not aid knowledge discovery and 
may in fact mislead the process. The redundant attributes may be eliminated in order to reduce the complexity of the 
problem.   This paper proposes Neuro-Fuzzy-Rough Quickreduct (NFRQ) algorithm to select the features from the 
information system. Neural network is used to construct the membership functions, for fuzzyfying the crisp data. The 
experiments are carried out on the data sets of UCI machine learning repository and the Human Immunodeficiency 
Virus (HIV) data set in order to achieve the efficiency of the proposed algorithm. 
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1. Introduction 

Feature selection is the process to choose a subset of 
attributes from the original attributes. Feature selection 
has been studied intensively in the past decades [10, 11, 
12, 13]. The purpose of the feature selection identifies the 
significant features, eliminates the irrelevance of 
dispensable features to the learning task, and builds a 
good learning model. The benefits of feature selection are 
twofold: it considerably decreases the computation time of 
the induction algorithm, and increases the accuracy of the 
resulting mode. 

Feature selection algorithm falls into two categories: 
(i) the filter approach and (ii) the wrapper approach. In the 
filter approach, the feature selection is performed as a 
preprocessing step to induction. The filter approach is 
ineffective if it deals with the feature redundancy. In the 
wrapper approach [11], the feature selection is “wrapped 
around” an induction algorithm, so that the bias of the 
operators that defines the search and that of the induction 
algorithm interacts mutually. Though the wrapper 
approach suffers less from feature interaction, 
nonetheless, its running time would make the wrapper 
approach infeasible in practice, especially if there are 
many features because the wrapper approach keeps 
running the induction algorithms on different subsets from 
the entire attributes set until a desirable subset is 
identified. The Research intends to keep the algorithm 
bias, as small as possible and would like to find a subset 
of attributes that can generate good results by applying a 
suite of data mining algorithms.  

A decision table may have more than one reduct. 
Anyone of them can be used to replace the original table. 
Finding all the reducts from a decision table is NP-Hard.  
Fortunately, in many real applications it is usually not 
necessary to find all. A natural question arises that which 
reduct is the best one  if there exists more than one reduct. 
The selection depends on the optimality criterion 
associated with the attributes.   If it is possible to assign a 

cost function to attributes, then the selection can be 
naturally based on the combined minimum cost criteria. In 
the absence of an attribute cost function, the only source 
of information to select the reduct is the contents of the 
data table [13]. It is assumed that the best reduct is the one 
with the minimal number of attributes.  Thangavel et al. 
proposed various feature selection algorithms and 
compared with the existing algorithm [19, 20]. 

1.1 Rough Set Theory 

In 1982, Pawlak introduced the theory of Rough sets 
[15, 16].  This theory was initially developed for a finite 
universe of discourse in which the knowledge base is a 
partition, which is obtained by any equivalence relation 
defined on the universe of discourse. In rough sets theory, 
the data is organized in a table called decision table. Rows 
of the decision table correspond to objects, and columns 
correspond to attributes. In the data set, a class label to 
indicate the class to which each row belongs. The class 
label is called as decision attribute, the rest of the 
attributes are the conditional attributes. The conditional 
attributes are represented by C, the decision attributes are 
denoted by D, where C ∩ D = Ф, and tj denotes the jth  

tuple of the data table.  

Rough sets theory defines three regions based on the 
equivalent classes induced by the attribute values: lower 
approximation, upper approximation, and boundary. 
Lower approximation contains all the objects, which are 
classified surely based on the data collected, and Upper 
approximation contains all the objects, which can be 
classified probably, while the boundary is the difference 
between the upper approximation and the lower 
approximation. Hu et al.[6] presented the formal 
definitions of rough set theory and proposed a new rough 
sets model and redefined the core attributes and reducts 
based on relational algebra to take advantage of very 
efficient set-oriented database operations. 
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 Let U be any finite universe of discourse.  Let R be 
any equivalence relation defined on U.   Clearly, the 
equivalence relation partitions the universe U. Here, (U, 
R) which is the collection of all equivalence classes, is 
called the approximation space.  Let W1, W2, W3 , …,  Wn be 
the elements of the approximation space (U, R).  This 
collection is known as knowledge base.  Then for any 
subset A of U, the lower and upper approximations are 
defined as follows: 

RA = ∪{W i / Wi  ⊆ A                   (1) 

RA = ∪ {W i /  Wi  ∩ A ≠ ∅}                  (2) 

The ordered pair (RA, RA) is called a rough set.  
Once defined these approximations of A, the reference 
universe U is divided in three different regions: the 
positive region POSR(A), the negative region  NEGR(A) 
and the  boundary region BNDR(A),  defined as follows: 

            POSR(A) = RA                 (3) 

            NEGR (A) = U – RA        (4) 

            BNDR (A) = RA – RA     (5) 

Hence, it is trivial that if BND(A) = Φ,  then A is 
exact. This approach provides a mathematical tool that can 
be used to find out all possible reducts.  In this paper a 
novel hybrid approach viz.., Neuro-Fuzzy-Rough is 
proposed and some of the basic concepts of Neural 
Network and Fuzzy sets are discussed in the subsequent 
sections.  A good research survey on rough sets can be 
found in [21]. 

1.2 Neural Network  

A neural network is a technique that seeks to build 
an intelligent program using models that simulate the 
working network of the neurons in the human brain [5].  
A neuron is made up of several protrusions called 
dendrites and long branch called the axon.  A neuron is 
joined to the other neurons through the dendrites.  The 
dendrites of different neurons meet to form synapses, the 
areas where message pass.  The neurons receive the 
impulses via the synapses.  If the total of the impulses 
received exceeds a certain threshold value, then the 
neuron sends an impulse down the axon where the axon is 
connected to other neurons through more synapses.  The 
synapses may be excitatory or inhibitory in nature.  An 
excitatory synapse adds to the total of the impulses 
reaching the neuron, whereas an inhibitory neuron reduces 
the total of the impulses reaching the neuron.  In a global 
sense, a neuron receives a set of input pulses and sends 
out another pulse that is a function of the input pulses. 

1.3 Fuzzy sets 

The use of fuzzy set theory is one way of capturing 
the vagueness present in the real world, which would 
otherwise be difficult to use conventional set theory.  

There are many useful introductory resources regarding 
fuzzy set theory [2, 17].  In classical set theory, the 
elements could belong fully(i.e. have a membership of 1) 
or not at all( a membership of 0).  Fuzzy set theory relaxes 
this restriction by allowing memberships to take values 
anywhere in the range    [0, 1].  A fuzzy set can be defined 
as a set of ordered pairs A = {(x, µA(x))  x ∈ U}.  The 
function µA(x) is called the membership function for A, 
mapping each element of the universe U to a membership 
degree in the range [0, 1].  The universe may be discrete 
or continuous.  Any fuzzy set containing at least one 
element with a membership degree of 1 is called normal. 

The rest of the paper is organized as follows: 
Section 2 describes Fuzzy-Rough attribute reduction.  
Section 3 deals with the construction of membership 
functions using a neural network. Section 4 explains the 
Neuro-Fuzzy-Rough Quickreduct algorithm. Section 5 
describes the experimental analysis of Fuzzy-Rough 
Quickreduct and the Neuro-Fuzzy-Rough Quickreduct. 
Section 6 concludes this paper. 

2.  Fuzzy-Rough Quickreduct (FRQ) 

The Rough Set Attribute Reduction (RSAR) 
operates effectively with datasets containing discrete 
values.  Additionally, there is no way of handling noisy 
data.  As most datasets contain real-valued features, it is 
necessary to perform a discretization step beforehand.  To 
reduce this difficulty, discretization can be implemented 
by a standard fuzzification technique. The membership 
degrees of attribute values to fuzzy sets are typically not 
exploited in the process of dimensionality reduction.  This 
is counterintuitive.  By using fuzzy-rough sets [3, 14, 22], 
it is possible to use this information to guide feature 
selection.  The fuzzy-rough method and grouping 
mechanism are concerned with real valued attributes with 
corresponding attributes. 

  The fuzzy lower and upper approximations are defined as  

  µpX(x) =  
sup min(µ F(x),  (inf max{1 -  µ F(y),  µX(y)})      (6)    
                  F∈U/p                 y∈U  
       
  µpX(x) =  

sup min(µ F(x),  (sup min{µ F(y), µX(y)})           (7)
   F∈U/p                   y∈U 

By the extension principle, the membership of an object  
x∈U, belonging to the fuzzy positive region can be 
defined as  

µPosp(Q)(x)   =   sup  µpX(x)                                        (8)                          
X∈U/Q 

Using the definition of the fuzzy positive region, the 
new dependency function can be defined as follows: 
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              γp(Q) = ∑ x∈U µPosp(Q)(x) / U                        (9)
           

In crisp rough set attribute reduction, the data set 
would be discretized using the non-fuzzy sets.  However, 
in the new approach, membership degrees are used in 
calculating the fuzzy lower approximations and fuzzy 
positive regions. The pseudocode of the fuzzy-rough 
Quickreduct algorithm [7, 8, 9] is given below: 

FRQUICKREDUCT(C, D) 
C, the set of all conditional features 
D, the set of all decision features 

(1)  R� {}; γbest  = 0; γprev = 0  
(2)  do 
(3)  T  � R 
(4)  γprev = γbest 
(5)  ∀x  ∈ ( C – R) 
(6)   if  γR∪(x) (D)  >=  γT(D) 
(7)   T�  R ∪ (x) 
(8)   γbest  � γT(D) 
(9)   R � T 
(10)   until  γbest = =  γprev  
(11)   return  R 

 

When the Fuzzy-Rough Quickreduct algorithm applied 
to a Car data set (Table. 2), it produces the given reduct 
set (Weight, Door, Size}. 

3.  Construction of membership functions using a  
      Neural Network 
 

In this section, the construction of the membership 
function for fuzzification using neural network is 
discussed [18]. A number of input data values are selected 
and divided into a training data set and a testing data set.   
Consider a system of 8 data points (5 for training data 
points and 3 for testing data points) described using four 
conditional attributes and one decision attribute (Table 1) 
adopted from [6].  Then Table 1 can be normalized into 
Table 2.   

                       Table.1  Car Data 
Object Weight Door Size Cylinder Mileage 
1 Low 2 Com 4 High 
2 Low 4 Sub 6 Low 
3 Medium 4 Com 4 High 
4 High 2 Com 6 Low 
5 High 4 Com 4 Low 
6 Low 4 Com 4 High 
7 High 4 Sub 6 Low 
8 Low 2 Sub 6 Low 

Low=1 Medium=2 High=3 Com=1 Sub=2  

Table.2  Normalized Data 
Object Weight Door Size Cylinder Mileage 

(1,3,6)     
(2,4,5,7,8 ) 

 
1 

 
0.1667 

 
0.3333 

 
0.1667 

 
0.6667 

 
  1                  0 

2 0.1667 0.6667 0.3333 1.0000                   0                  1    

3 0.3333 0.6667 0.1667    0.6667      1                  0 
4 0.5000 0.3333 0.1667 1.0000   0                   1 

5 0.5000 0.6667 0.1667 0.6667   0                   1 

6 0.1667 0.6667 0.1667 0.6667               1                  0 

7 0.5000 0.6667 0.3333 1.0000    0                  1 

8 0.1667 0.3333 0.3333 1.0000    0                  1 

 
These data points have been placed in four fuzzy 

classes, R1, R2, R3 and R4 using any one of the clustering 
methods [4].  A neural network that can determine the 
membership values of any data point in the four classes is 
to be formed.  The membership values in Table 3 can be 
used to train and check the performance of the neural 
network which has been assigned membership values of 
unity for the classes into which they have been originally 
assigned.   

Table. 3   Membership values 
______________________________________________ 

Data points     1       2      3      4      5      6      7       8 
________________________________________________________ 

R1        1        0      0     0      0      0      0       0 
R2        0        0      0     1      0      0      0       1 
R3        0        0      1     0      1      1      0       0 
R4        0        1      0     0      0      0      1       0 

______________________________________________ 
 

Select a  4 X 5 X 5 X 4 neural network to simulate 
the relationship between the data points and their 
membership in the four fuzzy sets, R1, R2, R3 and R4 (Fig. 
1).  The attributes Weight, Door, Size and Cylinder for 
each data point are used as the input values and the 
corresponding membership values in the four fuzzy 
classes for each data point are the output values for the 
neural network. 

 

Fig. 1   4 X 5 X 5 X 4 neural network  

Table 4 shows the initial random values that have 
been assigned to the different weights connecting the 
paths between the elements in the layers in the network 
shown in Fig. 1.  
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Table. 4   Random Weight 
W1

11= 0.4349 
W1

12= 0.2463 
W1

13 = 0.5593 
W1

14 = 0.0595 
W1

15 = 0.6565 
W1

21 = 0.5130 
W1

22 = 0.2740 
W1

23 = 0.2684 
W1

24 = 0.4334 
W1

25 = 0.1406 
W1

31 = 0.1381 
W1

32 = 0.8613 
W1

33 = 0.5867 
W1

34 = 0.5190 
W1

35 = 0.1481 
W1

41 = 0.2389 
W1

42 = 0.7733 
W1

43 = 0.1406 
W1

44 = 0.5199 
W1

45 = 0.5190 
 

W2
11 = 0.2560 

W2
12 = 0.8859 

W2
13 = 0.2239 

W2
14 = 0.3012 

W2
15 = 0.5871 

W2
21 = 0.8659 

W2
22 = 0.9816 

W2
23 = 0.6769 

W2
24 = 0.2219 

W2
25 = 0.4579 

W2
31 = 0.9020 

W2
32 = 0.6478 

W2
33 = 0.6688 

W2
34 = 0.9789 

W2
35 = 0.9708 

W2
41 = 0.6239 

W2
42 = 0.5108 

W2
43 = 0.6488 

W2
44 = 0.3791 

W2
45 = 0.3159 

W2
51 = 0.5186 

W2
52 = 0.5237 

W2
53 = 0.3791 

W2
54 = 0.5429 

W2
55 = 0.9758 

 

W3
11 = 0.5456 

W3
12= 0.4851 

W3
13 = 0.2681 

W3
14 = 0.8056 

W3
21 = 0.4568 

W3
22 = 0.7847 

W3
23 = 0.4431 

W3
24 = 0.7968 

W3
31 = 0.0856 

W3
32 = 0.4243 

W3
33 = 0.2191 

W3
34 = 0.6193 

W3
41 = 0.1357 

W3
42 = 0.7710 

W3
43 = 0.0576 

W3
44 = 0.0796 

W3
51 = 0.8151 

W3
52 = 0.8970 

W3
53 = 0.1081 

W3
54 = 0.4314 

 
 
 
 
 
 

 

Take the first data point (0.1667, 0.3333, 0.1667, 
0.6667) as the input to the neural network.   Use the 
following equation (10) as follows: 

 O = 1 / 1 + exp – (Σ x
i
w

i
 – t)                                                        (10) 

where   O – output of the threshold element computed     
using the sigmoidal function  

       xi  - inputs to the threshold element(i = 1, 2, 3,….n) 

       wi  - weights attached to the inputs 

        t  - threshold for the element 

First iteration: In the first iteration to train the neural 
network,  equation (10) is used and  choose t = 0.   

 Outputs for the second layer 

O1
 2   =  1 / 1 + exp –  

[(0.1667*0.4349)+(0.3333*0.5130)+(0.1667*0.1381) 
              +(0.6667*0.2389) –0.0] = 0.6049 

      

O2
 2   =  1 / 1 + exp –      

[(0.1667*0.2463)+(0.3333*0.2740)+(0.1667*0.8613)         
+(0.6667*0.7733) –0.0] =  0.6882 and so on. 

Outputs for the third layer 

O1
3=1/1+exp–  

[(0.6049*0.2560)+(0.6882*0.8659)+(0.5925*0.9020)+ 

(0.6428*0.6239) +(0.6288*0.5186) –0.0] = 0.8821 

O2
3=1/1+exp– 

[(0.6049*0.8859)+(0.6882*0.9816)+(0.5925*0.6478)+ 

(0.6428*0.5108) +(0.6288*0.5237) –0.0] = 0.9049 

and so on. 

Outputs for the fourth layer 

O1
4=1/1+exp– 

[(0.8821*0.5456)+(0.9049*0.4568)+(0.8393*0.0856)+ 

(0.8176*0.1357) +(0.8872*0.8151) – 0.0] = 0.8582 

 O2
4=1/1+exp– 

[(0.8821*0.4851)+(0.9049*0.7847)+(0.8393*0.4243)+ 

(0.8176*0.7710) +(0.8872*0.8970) –0.0] = 0.9488  

and so on 

Determining errors 

Compare the outputs of the fourth layer (which is the 
output layer) to the correct outputs (previously known 
membership values listed in Table 3) to determine the 
final error of the neural network as follows: 

 R1 : E1
 4    =  O1

 4   - O1
 4 . actual  =  0.8582 – 1.0000        

    =     -0.1418 

   R2 : E2
 4    =  O2

 4   - O2
 4 . actual  =  0.9488 – 0.0    

                   =    0.9488  and so on. 

The errors of the output layer have been computed for 
the first iteration and these errors are distributed to the 
other nodes in the previous layer using the equation (11) 

               En  = On ( 1 - On ) Σ w nj E j                                                  (11) 

Assigning errors: First, assign errors to the elements in the 
third layer. 

E1
3  = 0.8821 *(1-0.8821)*((0.5456*(-  0.1418 )) +    

(0.4851* 0.9488) + (0.2681* 7240)+(0.8056*0.9168))    =  
0.1368 

E2
3  = 0.9049 *(1-0.9049)*((0.4568*(-  0.1418 )) + 

(0.7847* 0.9488) + (0.4431* 7240)+(0.7968*0.9168))    =  
0.1490 and so on. 

and then assign errors to the elements in the second layer. 

 E1
2 = 0.6049 *(1-  0.6049) * ((0.2560*0.1368) + 

0.8859*0.1490)  +  (0.2239*0.1506) 
+(0.3012*0.1233)*(0.5871*0.1210))  

  =   0.0486 

 E2
2=   0.6882 *(1-0.6882) * ((0.8659*0.1368) + 

(0.9816*0.1490) + (0.6769*0.1506)  
+(0.2219*0.1233)*(0.4579*0.1210)) =   0.0790 and so on. 
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Now the errors associated with each element in the 
network are known, the weights associated with these 
elements can be updated so that the network approximates 
the output more closely.  To update the weights the 
following equation (12) can be used: 

  wi 
jk (new) = wi 

jk (old) + α E k
(i + 1) x jk                          (12)                                             

where  wi
jk is the weight associated with path connecting 

the jth element of the ith layer   to the kth element of the (i + 
1)th layer , α  is the learning constant from 0 to 1. Here it is 
assumed  as 0.4 for this example. Ek

(i + 1)  is the error 
associated  with the kth element of the (i + 1)th layer and x 
jk   is the input from the jth element in the ith layer to the kth 
element in the (i  + 1)th layer (Oi

j ). 

Updating Weights  

The weights connecting elements in the third and fourth 
layers will be updated thus: 

W3
11  = 0.5456+(0.4*(-0.1418)*0.8821)     =       0.4956 

   W3
21 =0.4568+(0.4*(-0.1418)*0.9049)    =    0.4055 and 

so on. 

Then weights connecting elements in the second and the 
third layers are updated thus: 

W2
11  = 0.2560+(0.4*(0.1368)*0.6049)      =     0.2891 

  W2
21  =0.8659+(0.4*(0.1368)*0.6882)     =     0.9036  and 

so on. 

And then finally, weights connecting elements in the first 
and the second layers are updated thus: 

W1
11  = 0.4349+(0.4*(0.0486)*0.1667)     =     0.4381 

W1
21= 0.5130+(0.4*(0.0486)*0.3333)     =     0.5195 

and so on. 

All the weights in the neural network have been 
updated and the first input data point is again passed 
through the neural network.  The errors in approximating 
the output are computed again and redistributed as before.  
This process is continued until the errors are within 
acceptable limits.  Next, the second data point and the 
corresponding membership values are used to train the 
neural network.  This process is continued until all the 
data points in the training data set are used. The 
performance of the neural network (how closely it can 
predict the value of the membership of the data point) is 
then checked using the data points in the testing data set.  
Once the neural network is trained and verified to be 
performing satisfactorily, it can be used to find the 
membership of any other data points in the four fuzzy 
classes.  The membership function values obtained from 
the neural network are tabulated in Table 5. 

 
Table. 5 After Applying the Membership Function 

Object Weight Door Size Cylinder Mileage 
(1,3,6)     

(2,4,5,7,8 ) 
      
1 0.8512 0.9849 0.9900 0.9704                    1   1                   0 
2 0.8584 0.9868 0.9914 0.9735  0   0                   1    
3 0.8566 0.9863 0.9910   0.9727       1                   0 
4 0.8569 0.9864 0.9911 0.9729    0                   1 
5 0.8579 0.9866 0.9912 0.9733    0                   1 
6 0.8552 0.9859 0.9907 0.9721                1                   0 
7 0.8606 0.9873 0.9917 0.9744    0                   1 
8 0.8551 0.9860 0.9908 0.9722    0                   1 

 
4.  Neuro-Fuzzy-Rough Quickreduct (NFRQ) 

In the Fuzzy-Rough Quickreduct algorithm, each 
and every conditional attribute requires the membership 
functions to fuzzify the crisp values while the extended 
principle of the fuzzy set is being used.  In this approach 
all the conditional attributes should be mapped into two 
regions namely Na and Za.  This is a time consuming and 
tedious process. To overcome this disadvantage, neural 
network has been used to construct the membership 
values and suitably the Fuzzy-Rough Quickreduct has 
been modified to construct the reduct set. 

 In [3], the fuzzy p-lower and p-upper approximations are 
defined as  

µpX(Fi) = infxmax{1 -  µ Fi(x), µX(x)} ∀i                 (13) 

µpX(Fi) = supxmin{ µ Fi(x), µX(x)} ∀i                        (14)             

where Fi  denotes a fuzzy equivalence class belonging to U 
/ P.  As the universe of discourse in feature selection is 
finite, the use of sup and inf are to be altered.  As a result 
of this, the fuzzy lower and upper approximations are 
herein redefined as: 

µpX(x) = min(µ F(x),  (inf max{1 -  µ F(y), µX(y)})   (15)            
            y∈U   
 
µpX(x) = min(µ F(x),  (sup min{µ F(y), µX(y)})         (16)             
           y∈U   
                             

Fuzzy-Rough set based feature selection builds on the 
notion of fuzzy lower approximation to enable reduction 
of data sets containing real valued features.  The fuzzy 
positive region can be defined as 

µPosp(Q)(x) =    sup   µpX(x)                (17)                                                    
                            X∈U/Q 
 

Using the definition of the fuzzy positive region, the 
new dependency function can be defined as follows: 

         γp(Q) = µPosp(Q)(x)/ U  

                   = ∑ x∈U µPosp(Q)(x) / U                       (18) 
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The Neuro-Fuzzy-Rough Quickreduct Algorithm 
(NFRQA) is given here under. 

NFRQUICKREDUCT(C, D) 
C, the set of all conditional features 
Q, the set of all decision features 

(1)  C� the set of all membership values  generated 
by     Neural Network 

 (2)   RED � {} 
 (3)   Do 
 (4)   TEMP � RED 
 (5)    For x ∈ C 
 (6)             if  min{γRED∪(x) (Q) > γTEMP (Q)} 
 (7)            TEMP � RED ∪ min(x) 
 (8)            RED � TEMP 
 (9)    until  γREd (Q) = = γC (Q) 
 (10)   return RED 
     

Worked Example   

Using the Table. 5, (for all conditional and decision 
attributes), and setting A = {Weight},  B = {Door},  C = 
{Size}, D = {Cylinder} and Q = {Mileage}.  First the 
lower approximations of A, B, C and D can be calculated 
using the equation.  For simplicity, only ‘A’  will be  
considered here; that is ‘A’ is to approximate ‘Q’.  For the 
first decision equivalence class  X = {1, 3, 6},   µA{1, 3, 

6}(x) needs to be calculated: 

µA{1, 3, 6}(x) =  min(µ F(x),  (inf max{1 -  µ F(y),  
                                            y∈U 
                        µ{1, 3, 6}(y)})                                                        
For object 1 this can be calculated as follows: 

max (1 - µ a(1), µ{1, 3, 6}(1)) = max( 0.1488, 1.0)  
                                                  =    1.0  
max (1 - µ a(2), µ{1, 3, 6}(2)) = max( 0.1416, 0.0)  
                                                  =    0.1416  
max (1 - µ a(3), µ{1, 3, 6}(3)) = max( 0.1434, 1.0) 
                                                  =    1.0 
max (1 - µ a(4), µ{1, 3, 6}(4)) = max( 0.1431, 0.0)   
                                                  =    0.1431 
max (1 - µ a(5), µ{1, 3, 6}(5)) = max(0.1421,  0.0)  
                                                  =   0.1421 
max (1 - µ a(6), µ{1, 3, 6}(6)) = max( 0.1448, 1.0)   
                                                  =    1.0  
max (1 - µ a(7), µ{1, 3, 6}(7)) = max( 0.1394, 0.0)   
                                                  =    0.1394 
max (1 - µ a(8), µ{1, 3, 6}(8)) = max( 0.1449, 0.0)   
                                                  =    0.1449 
Therefore,  min(µ F(x),  (inf max{1 -  µ F(y),  

          y∈U 
                                      µ{1, 3, 6}(y)})  

     
=  min( 0.8512, inf{1.0, 0.1416, 1.0, 0.1431, 0.1421, 1.0, 
0.1394, 0.1449})  
 =  min(0.8512, 0.1394)   =  0.1394  
 

Thus, µA{1, 3, 6}(1) = 0.1394.  Similar calculation can 
be made for other objects. Then the corresponding values 
for X  = {2, 4, 5, 7, 8} can also be determined. For 
object1, µA{2, 4, 5, 7,8}(1) = 0.1434. Similar calculation can 
be made for other objects. Using these values, the fuzzy 
positive region for each object can be calculated using  

µPosp(Q)(x) =    sup   µAX(x)                                                
                             X∈U/Q 
For object1,   
µPosp(Q)(1) = sup(0.1394, 0.1434)  = 0.1434.  Similar 
calculation can be made for other objects. The next step is 
to determine the degree of dependency of Q on A: 

 γA(Q)  =  ∑ x∈U µPosp(Q)(x) / U      

           = 1.1472 / 8 = 0.1434 

Similarly, Calculating for B, C and D as: 

γB(Q)  = 0.0137 
 γC(Q) = 0.00090 
 γD(Q) = 0.0273 

 
From this it can be seen that the attribute ‘C’ will 

cause the smallest in dependency degree.  The attribute is 
chosen and added to the potential reduct.  Thus the 
derived value is compared with all conditional attribute 
values as. γ{A, B,  C, D}(Q).   

γ{A, B,  C, D}(Q) = 0.1434 

If the values are equal, the reduct attributes are 
obtained.  Otherwise the smallest attribute can be 
combined with the other attributes. By taking the 
minimum values (min(C, A), min(C, B), (min(C, D)) of 
original attributes can be obtained from using the Table. 5.  

 The process iterates and the two dependency degrees 
are calculated as,  

γ{C, A } (Q) = 0.1434 
γ{C, B} (Q)  = 0.0137 
γ{C, D} (Q)  = 0.0273 

 
In the above combinations, again the minimum 

dependency value can be taken.  Therefore,  γ{C, B} (Q) is 
minimum.  The attribute is chosen and added to the 
potential reduct.  This value needs to be checked with all 
conditional attribute values i.e. γ{A, B, C, D}(Q).   If the 
values are equal, the reduct attributes can be returned. If 
not the smallest attribute set can be combined with the 
other attributes. It states that the minimum values (min(C, 
B, A),   min(C, B, D)) of original attributes can be taken 
using the Table 3.5. This process iterates and the three 
dependency degrees are calculated as,  
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 γ{C, A, B }(Q) = 0.1434 

 γ{C, B, D}(Q)  = 0.1434 
 

From this it can be seen that both sets have the same 
degree of dependency.  In this case, the attributes can be 
taken priority-wise and added to the potential reduct. This 
value can be checked with all conditional attribute values 
as  γ{A, B,  C, D}(Q) .   

 γ{A, B,  C, D}(Q) = 0.1434 

Hence, the reduct attributes such as {A, B, C} or {B, 
C, D} is returned, since all the values are equal.  

5.  Experimental Analysis 

The Fuzzy-Rough Quickreduct (FRQ) and the 
proposed Neuro-Fuzzy-Rough Quickreduct (NFRQ) 
algorithm  have been implemented for the data sets 
available in the UCI machine learning repository [1] viz., 
Bupa, New-Thyroid, Pima, Hepatitis, Iris, Dermatology, 
Postoperative and Ecoli.    

The HIV database consists of information collected 
from the HIV patients at the Voluntary Counseling and 
Testing Center (VCTC) of the Government Headquarters 
Hospital, Dindigul District, Tamilnadu, India, a well-
known center for diagnosis and treatment of HIV. It 
contains the records of 2200 patients with 21 conditional 
attributes and a decision attribute.  

The proposed algorithm has been compared with the 
existing Fuzzy-Rough Quickreduct algorithm.  The 
Comparative Analysis is tabulated in Table. 6.  It is 
observed that the proposed algorithm Neuro-Fuzzy-Rough 
Quickreduct produced minimal reducts for the data sets 
Bupa, New-Thyroid, Hepatitis, Iris, Dermatology, Ecoli 
and HIV than the existing algorithm Fuzzy-Rough 
Quickreduct. In the case of  Car, Pima and Postoperative 
data sets, the same number of reducts are obtained in both 
the algorithms.    The performance analysis of the Fuzzy-
Rough Quickreduct (FRQ) and the Neuro-Fuzzy-Rough 
Quickreduct (NFRQ) algorithm is also depicted in Fig. 2. 

Table. 6  Comparative Analysis 
Data Set Instances Original       

Attributes 
FRQ    N FRQ 

Car 8 4 3 3 
Bupa 345 6 4 3 
New-Thyroid 215 5 4 3 
Pima 768 8 3 3 
Hepatitis 80 19 8 7 
Iris 150 4 3 2 
Dermatology 358 34 18 16 
Postoperative 90 8 5 5 
Ecoli 336 7 5 3 
HIV 2200 21 18 15 
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Fig. 2 Performance Analysis of FRQ with NFRQ 

 
6.  Conclusion  
 

If the data in the information system is 
redundant, it will not aid in the effective knowledge 
discovery.  This in turn will mislead the process. The 
redundant attributes may be eliminated in order to 
generate the reduct set (i.e., reduced set of necessary 
attributes) or to construct the core set of attributes. The 
disadvantage of fuzzy rough quick reduct algorithm is 
that, each and every conditional attributes which requires 
the membership functions to fuzzify the crisp values.   
Meanwhile the extended principle of the fuzzy set has 
been addressed and to overcome the disadvantages, the 
neural network has been used to construct the membership 
values of each and every value. The efficiency of the 
proposed Neuro-Fuzzy-Rough Quickreduct Algorithm 
(NFRQ) has been achieved. 
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